Relations and Functions Part - 2

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (**D**) A is false and R is True
- **Q.** 1. Let *W* be the set of words in the English dictionary. A relation *R* is defined on *W* as $R = \{(x, y) \in W \times W \text{ such that } x \text{ and } y \text{ have at least} \}$ one letter in common}.

Assertion (A): R is reflexive.

Reason (R): R is symmetric.

Ans. Option (B) is correct.

Get More Learning Materials Here : 📕

(1 Mark each)

Explanation: For any word $x \in W$ x and x have atleast one (all) letter in common $(x, x) \in R, \forall x \in W :: R$ is reflexive Symmetric: Let $(x, y) \in R, x, y \in W$ x and y have atleast one letter in common y and x have atleast one letter in common ⇒ $(y, x) \in R :: R$ is symmetric \Rightarrow Hence A is true, R is true; R is not a correct explanation for A.

Q. 2. Let *R* be the relation in the set of integers *Z* given by $R = \{(a, b) : 2 \text{ divides } a - b\}.$ Assertion (A): *R* is a reflexive relation. **Reason (R):** A relation is said to be reflexive if *xRx*, $\forall x \in \mathbb{Z}.$

Ans. Option (A) is correct.

Explanation: By definition, a relation in *Z* is said to be reflexive if xRx, $\forall x \in Z$. So R is true. $a - a = 0 \Rightarrow 2$ divides $a - a \Rightarrow aRa$. Hence *R* is reflexive and A is true. R is the correct explanation for A.

Q. 3. Consider the set $A = \{1, 3, 5\}$.

Assertion (A): The number of reflexive relations on set A is 2^9 .

Reason (R): A relation is said to be reflexive if xRx, $\forall x \in A$.

Ans. Option (D) is correct.

Explanation: By definition, a relation in A is said to be reflexive if xRx, $\forall x \in A$. So R is true. The number of reflexive relations on a set containing *n* elements is 2^{n^2-n} . Here n = 3. The number of reflexive relations on a set $A = 2^{9-3} = 2^6$. Hence A is false. So, A is true. Range of $f = \{4, 5, 6\}$. Co-domain = $\{4, 5, 6, 7\}$. Since co-domain \neq range, f(x) is not an onto function. Hence *R* is false.

Q. 6. Consider the function $f : R \rightarrow R$ defined as

 $f(x) = \frac{x}{x^2 + 1}.$

Assertion (A): f(x) is not one-one. Reason (R): f(x) is not onto.

Ans. Option (B) is correct.

Explanation: Given, $f : R \rightarrow R$; $f(x) = \frac{x}{1+x^2}$ Taking $x_1 = 4, x_2 = \frac{1}{4} \in R$ $f(x_1) = f(4) = \frac{4}{17}$

Q. 4. Consider the function $f : R \to R$ defined as $f(x) = x^3$ Assertion (A): f(x) is a one-one function. Reason (R): f(x) is a one-one function if co-domain = range.

Ans. Option (C) is correct.

Explanation: f(x) is a one-one function if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.Hence R is false.Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$ \Rightarrow $(x_1)^3 = (x_2)^3$ \Rightarrow $x_1 = x_2$ Hence f(x) is one-one.Hence A is true.

Q. 5. If
$$A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$$
 and $f = \{(1, 4), (2, 5) (3, 6)\}$ is a function from *A* to *B*.
Assertion (A): $f(x)$ is a one-one function.
Reason (R): $f(x)$ is an onto function.

Ans. Option (C) is correct.

Given, $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and $f : A \rightarrow B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ *i.e.*, f(1) = 4, f(2) = 5 and f(3) = 6. It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one.

$$f(x_2) = f\left(\frac{1}{4}\right) = \frac{4}{17} \qquad (x_1 \neq x_2)$$

$$\therefore f \text{ is not one-one.}$$

A is true.
Let $y \in R$ (co-domain)

$$f(x) = y$$

$$\Rightarrow \qquad \frac{x}{1+x^2} = y$$

$$\Rightarrow \qquad y.(1+x^2) = x$$

$$\Rightarrow \qquad yx^2 + y - x = 0$$

$$\Rightarrow \qquad x = \frac{1 \pm \sqrt{1-4y^2}}{2y}$$

since, $x \in R$,

$$\therefore \qquad 1-4y^2 \ge 0$$

$$\Rightarrow \qquad -\frac{1}{2} \le y \le \frac{1}{2}$$

So Range $(f) \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
Range $(f) \neq R$ (Co-domain)
 $\therefore f$ is not onto.
 R is true.
 R is not the correct explanation for A.

Get More Learning Materials Here :

